ON A GEOMETRIC PROPERTY OF PERFECT GRAPHS

L. S. ZAREMBA and S. PERZ

Received 19 October 1981

Let G be a graph, VP(G) its vertex packing polytope and let A(G) be obtained by reflecting VP(G) in all Cartersian coordinates. Denoting by $A^*(G)$ the set obtained similarly from the fractional vertex packing polytope, we prove that the segment connecting any two non-antipodal vertices of A(G) is contained in the surface of A(G) and that G is perfect if and only if $A^*(G)$ has a similar property.

1. Introduction

A graph G is called γ -perfect if and only if for every one of its induced subgraphs G_0 , the chromatic number of G_0 equals the maximum number of vertices forming a clique in G_0 ; a graph G is α -perfect if and only if for every one of its induced subgraphs G_0 , the minimum number of cliques covering G_0 is equal to the size of a largest independent (stable) set in G_0 . These concepts were introduced by G_0 . Berge in the early nineteen-sixties to formulate two conjectures. One of them stating that a graph is γ -perfect if and only if it is α -perfect was proved in 1971 by Lovász [4, 5] and became known as the Perfect Graph Theorem, whereas the second, called the Strong Perfect Graph Conjecture, is still unsettled.

A further result [6, p. 86] (essentially used in this paper) that is strongly related to perfect (i.e., γ or, equivalently α -perfect graphs) is due to Chvátal and Fulkerson [1, 2, 3]. It can be restated as follows. Let G be a finite undirected graph on n vertices; let A be the $m \times n$ clique-vertex incidence matrix of G, and B be the $r \times n$ clique-vertex incidence matrix of G, the complement of G. Then the following conditions are equivalent (below e_r and e_m denote the vectors in R^r and R^m , respectively, with all their components equal to one)

- (i) G is perfect,
- (ii) $P(A) = \{x \in \mathbb{R}^n : x \ge 0, Ax \le e_m\}$ has only integer vertices,
- (iii) $Q(B) = \{ y \in \mathbb{R}^n : y \ge 0, By \le e_i \}$ has only integer vertices.

In this paper, a new condition characterizing perfect graphs is stated and proved. Namely, let G be a graph, VP(G) its vertex packing polytope and let A(G)

AMS subject classification 1980: 05 C 99; 52 A 25.

be obtained by reflecting VP(G) in all Cartesian coordinates. Let, moreover, $A^*(G)$ be obtained similarly from the fractional vertex packing polytope. It is proved that the segment connecting any two non-antipodal vertices of A(G) lies in the surface of A(G) and that G is perfect if and only if $A^*(G)$ has similar property.

2. Basic notation

Let $G=(V, \Gamma)$ be a graph with *n* vertices. By *A* we shall denote the $m \times n$ clique matrix of *G*, and by *B* the $r \times n$ clique matrix of \overline{G} . We call

(1)
$$Q(B) = \{ y \in R^n : y \ge 0, \quad By \le e_r \}$$

the fractional vertex packing polytope of G; above e_r is the vector with all his r components equal to one.

By $\mathscr E$ we shall denote the family of all maximal cliques in G and by $\overline{\mathscr E}$ the family of all maximal stable sets in G. Besides, for every $W \subset V$, let x^W mean the incidence vector of W, i.e. $x_v^W = 1$ if $v \in W$ and $x_v^W = 0$ if $v \notin W$.

Therefore

$$(2) VP(G) = \operatorname{conv} \left\{ x^{W} \in \mathbb{R}^{n} \colon W \in \mathscr{E} \right\}$$

is the vertex packing polytope of G. Reflecting this set in all coordinate planes we obtain the set

(3)
$$A(G) = \operatorname{conv} \{x \in \mathbb{R}^n \colon |x| \in VP(G)\},\$$

where $|x| = (|x_1, ..., |x_n|)$. Let $A^*(G)$ be obtained similarly from the fractional vertex packing polytope of G, i.e.,

(4)
$$A^*(G) = \{x \in R^n : |x| \in Q(B)\}.$$

3. Main results

Theorem 1. For any undirected graph G, the segment connecting any two non-antipodal vertices of A(G) lies in the surface of A(G).

Proof. Let x^1 and x^2 be any pair of non-antipodal extreme points of A(G). Assume that, for a certain number λ , $0 < \lambda < 1$, the point $\bar{x} = \lambda x^1 + (1 - \lambda)x^2 \in \text{int } A(G)$, the interior of A(G). Then also $\bar{x} \in \text{int } A^*(G)$, which means that, for some $\varepsilon > 0$,

$$(5) B|\bar{x}| < (1-\varepsilon)e_r.$$

Let $V_1 = \{v \in V: x_v^1 \neq 0\}$ and $V_2 = \{v \in V: x_v^2 \neq 0\}$. If $V_1 = V_2$, then, for some index $v \in V$, we have $x_v^1 = x_v^2 \in \{+1, -1\}$ and consequently $|\bar{x}_v| = 1$, which obviously contradicts (5).

In the opposite case, we get nodes $v_1 \in V_1$ and $v_2' \in V$ such that, for some clique $E \in \overline{\mathscr{E}}$, $\{v_1, v_2'\} \subset E$. Then $x^E \cdot |\overline{x}| = \lambda |x_{v_1}^1| + (1-\lambda)|x_{v_2}^2| = 1$, which again contradicts (5).

Now we can state and prove our main result.

Theorem 2. Let G be a graph on n vertices. Then the following conditions are equivalent:

- (i) G is perfect,
- (ii) $A(G)=A^*(G)$,
- (iii) the segment connecting any two non-antipodal vertices of $A^*(G)$ lies in the surface of $A^*(G)$.

Proof. We shall prove the equivalences (i) \Leftrightarrow (ii) and (ii) \Leftrightarrow (iii). To prove the first one, observe that condition (ii) is equivalent to the equality

$$(6) VP(G) = Q(B),$$

which, by virtue of the well-known characterization of perfect graphs due to V. Chvátal and D. Fulkerson [6, p. 86], is equivalent to condition (i).

Assume now that condition (ii) does not hold. Then there exists a vertex $x \in A^*(G)$ with $|x_i| < 1$ for some $i \in V$. Putting $y = (y_n)$, $v \in V$,

(7)
$$y_v = x_v, \quad v = i, \quad \text{and} \quad y_i = -x_i, \quad v \neq i,$$

and $z=\frac{1}{2}(x+y)$ we infer that the point z does not lie in the surface of $A^*(G)$. In this way we have proved (iii) \Rightarrow (ii). The reverse implication follows easily from Theorem 1.

References

- [1] V. CHVÁTAL, On certain polytopes assotiated with graphs, Centre de Recherche Mathematique, Univ. de Montreal, Que., CRM-238, 1972.
- [2] D. R. FULKERSON, Antiblocking polyhedra, J. Combinatorial Theory (B) 12 (1972) 50-71.
- [3] D. R. FULKERSON, Blocking and antiblocking pairs of polyhedra, *Mathematical Programming* 1 (1971) 168—194.
- [4] L. Lovász, Normal hypergraphs and the perfect graph conjecture, Discrete Mathematics 2 (1972) 353—267.
- [5] L. Lovász, A characterization of perfect graphs, J. Combinatorial Theory (B) 13 (1972) 95—98.
- [6] M. Paderg, Almost integral polyhedra related to certain combinatorial optimization problems, Linear Algebra and its Applications, Vol. 15 (1976) 63—88.
- L. S. Zaremba

ul. Szekspira 4m 130, 01—913 Warszawa, Poland S. Perz

Central Office of Interurban Telecommunications Warszawa, Poland